![]() | NÚMEROS NATURALES EXTREMADAMENTE GRANDES |
〈( fac(n) = 1*…*n )〉
〈( fac(n) = (n*fac(n−1) ← n>1 →' 1) )〉
〈( superfac(n) = (^⊣( fac☆n ))(Δ3) )〉
Δ3
la asociatividad jerárquica triádica, en este caso a la derecha.
〈( hiperfac(n) = *⊣( [⌊1…n⌋^⌊1…n⌋] ) )〉
Notación de Knuth | Notación de Conway |
G0 = 3↑↑↑↑3 (4 flechas) | G0 = 3→3→4 |
G1 = 3↑…↑3 (G0 flechas) | G1 = 3→3→G0 |
G2 = 3↑…↑3 (G1 flechas) | G2 = 3→3→G1 |
. . . | . . . |
G63 = 3↑…↑3 (G62 flechas) | G63 = 3→3→G62 |
(G = G(63))/〈( G(i) = (3(^★(G(i−1)))3 ←' i=1 → (3 ^^^^ 3)) )〉
pol(m n)
al número correspondiente a un polígono de m
lados que contiene un número n
, se tiene:
〈( pol(3 n) = n^n )〉
〈( rec(m i) = (pol(3 n) ← i=0 →' pol(m rec(m i−1) )〉
〈( pol(m n) = rec(m−1 n) )〉
pol(4 3) ev. rec(3 3) ev. pol(3 rec(3 2)) ev.
pol(3 pol(3 rec(3 1))) ev. pol(3 pol(3 pol(3 rec(3 0)))) ev.
pol(3 pol(3 pol(3 0))) ev. pol(3 pol(3 3^3)) ev.
pol(3 (3^3)^(3^3)) ev. ((3^3)^(3^3))^((3^3)^(3^3))
(Moser = (pol(pol(5 2) 2))
(googol = 10^100)
〈( n_oogol = 10^(10^n) )〉
(2_oogol ≡ googol)
〈( n_plex = 10^n )〉
〈( n_minex = 10^(−n) )〉
(hectoplex = 10^100) // eq. googol
(kiloplex = 10^1000)
〈( n_duplex = (n_plex)_plex )〉
〈( n_triplex = ((n_plex)_plex)_plex )〉
(googol ≡ 100_plex)
(googol_plex ≡ 10^googol) ≡ (10^(10^100))
(googol_plex)_plex ≡ (10^(googol)_plex)) &equiv: 10^(10^(10^100))
(2_plex ≡ 100)
(2_plex)_plex ≡ 10^(2_plex) ≡ googol ≡ 10^100)
((2_plex)_plex)_plex ≡ 10^(2_plex_plex) ≡ 10^googol ≡ googol_plex)
〈( n_oogol ≡ (n_plex)_plex )〉
〈( (n_plex)_plex ≡ (10^n)_plex )〉
〈( (10^n)_plex ≡ 10^(10^n) )〉